Calfoam® Salt - Viscosity Curves

Personal care applications such as shampoo, body wash, hand soap and pet shampoos commonly incorporate Calfoam® lauryl sulfates and lauryl ether sulfates. One physical property of these products which is highly desirable is appropriate viscosity. Formulations typically combine alkanolamides like Calamide® C, betaines like Caltaine® C-35 and sodium chloride to build viscosity to the desired amount. This bulletin illustrates the salt-viscosity response with various Calfoam® chemistries in the following general personal cleanser formula.

<table>
<thead>
<tr>
<th>Calfoam®</th>
<th>6% active material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamide® C</td>
<td>1% as is</td>
</tr>
<tr>
<td>Caltaine® C-35</td>
<td>1% as is</td>
</tr>
<tr>
<td>Water</td>
<td>to 100%</td>
</tr>
</tbody>
</table>

The graphs below illustrate the salt-viscosity responses for numerous Calfoam® chemistries. Some conclusions from the personal care cleanser formulation above utilizing various salt additions and Calfoam® chemistries include:

- Calfoam® SLS-30 builds higher viscosity than ALS-30
- The highest viscosity (about 15,000 cp.) is achievable by using Calfoam® ES-302
- Ether sulfates containing three moles of EO, like Calfoam® ES-303 (SLES) and EA-303 (ALES) give lower viscosities than their 2 mole counterparts.
- A 50:50 blend of SLS and SLES (3-mole) brings the viscosity in about the middle of their individual viscosity responses.
Salt Viscosity Curves

For More Information and Samples

Contact Pilot Chemical
1.800.70.PILOT
info@pilotchemical.com
www.pilotchemical.com

The information provided is current as of the date of publication as shown by the document control number.